Divided difference estimates and accuracy enhancement of discontinuous Galerkin methods for nonlinear symmetric systems of hyperbolic conservation laws

نویسندگان

  • XIONG MENG
  • J. K. RYAN
چکیده

In this paper, we investigate the accuracy-enhancement for the discontinuous Galerkin (DG) method for solving one-dimensional nonlinear symmetric systems of hyperbolic conservation laws. For nonlinear equations, the divided difference estimate is an important tool that allows for superconvergence of the post-processed solutions in the local L2 norm. Therefore, we first prove that the L2 norm of the α-th order (16α 6 k+1) divided difference of the DG error with upwind fluxes is of order k+ 3 2 − 2 , provided that the flux Jacobian matrix, f ′(u), is symmetric positive definite. Furthermore, using the duality argument, we are able to derive superconvergence estimates of order 2k+ 3 2 − 2 for the negative-order norm, indicating that some particular compact kernels can be used to extract at least ( 3 2 k+1)th order superconvergence for nonlinear systems of conservation laws. Numerical experiments are shown to demonstrate the theoretical results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement

In this paper, an analysis of the accuracy-enhancement for the discontinuous Galerkin (DG) method applied to one-dimensional scalar nonlinear hyperbolic conservation laws is carried out. This requires analyzing the divided difference of the errors for the DG solution. We therefore first prove that the [Formula: see text]-th order [Formula: see text] divided difference of the DG error in the [Fo...

متن کامل

A Posteriori Analysis of Discontinuous Galerkin Schemes for Systems of Hyperbolic Conservation Laws

Abstract. In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin s...

متن کامل

The Runge–Kutta Discontinuous Galerkin Method for Conservation Laws V

This is the fifth paper in a series in which we construct and study the so-called Runge–Kutta discontinuous Galerkin method for numerically solving hyperbolic conservation laws. In this paper, we extend the method to multidimensional nonlinear systems of conservation laws. The algorithms are described and discussed, including algorithm formulation and practical implementation issues such as the...

متن کامل

Discontinuous Galerkin method for hyperbolic equations involving δ - functions 1

In this paper, we develop and analyze discontinuous Galerkin (DG) methods to solve hyperbolic equations involving δ-functions. We investigate negative-order norm error estimates for the accuracy of DG approximations to linear hyperbolic conservation laws in one space dimension with singular initial data. We prove that, by using piecewise k-th degree polynomials, at time t, the error in the H(R\...

متن کامل

A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes

The paper proposes a scheme by combining the Runge-Kutta discontinuous Galerkin method with a δ-mapping algorithm for solving hyperbolic conservation laws with discontinuous fluxes. This hybrid scheme is particularly applied to nonlinear elasticity in heterogeneous media and multi-class traffic flow with inhomogeneous road conditions. Numerical examples indicate the scheme’s efficiency in resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016